Banach-Steinhaus theorems for bounded linear operators with values in a generalized 2-normed space
نویسندگان
چکیده
منابع مشابه
Complex Banach Space of Bounded Linear Operators
Let X be a set, let Y be a non empty set, let F be a function from [: C, Y :] into Y , let c be a complex number, and let f be a function from X into Y . Then F ◦(c, f) is an element of Y X . We now state the proposition (1) Let X be a non empty set and Y be a complex linear space. Then there exists a function M1 from [: C, (the carrier of Y ) X :] into (the carrier of Y ) such that for every C...
متن کاملBanach Space of Bounded Linear Operators
Let X be a set, let Y be a non empty set, let F be a function from [: R, Y :] into Y , let a be a real number, and let f be a function from X into Y . Then F ◦(a, f) is an element of Y X . One can prove the following propositions: (1) Let X be a non empty set and Y be a non empty loop structure. Then there exists a binary operation A1 on (the carrier of Y ) X such that for all elements f , g of...
متن کاملGeneralized Browder’s and Weyl’s Theorems for Banach Space Operators
We find necessary and sufficient conditions for a Banach space operator T to satisfy the generalized Browder’s theorem. We also prove that the spectral mapping theorem holds for the Drazin spectrum and for analytic functions on an open neighborhood of σ(T ). As applications, we show that if T is algebraically M -hyponormal, or if T is algebraically paranormal, then the generalized Weyl’s theore...
متن کاملBanach Algebra of Bounded Complex Linear Operators
The terminology and notation used here are introduced in the following articles: [18], [8], [20], [5], [7], [6], [3], [1], [17], [13], [19], [14], [2], [4], [15], [10], [11], [9], and [12]. One can prove the following propositions: (1) Let X, Y , Z be complex linear spaces, f be a linear operator from X into Y , and g be a linear operator from Y into Z. Then g · f is a linear operator from X in...
متن کاملHahn - Banach theorems for κ - normed spaces
For a new class of topological vector spaces, namely κ-normed spaces, an associated quasisemilinear topological preordered space is defined and investigated. This structure arise naturally from the consideration of a κ-norm, that is a distance function between a point and a G δ-subset. For it, analogs of the Hahn-Banach theorem are proved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasnik Matematicki
سال: 2003
ISSN: 0017-095X
DOI: 10.3336/gm.38.2.11